FOUNDATION LESSON PLAN Contents for Teaching and Learning

Category : 9 to 15

Flowchart programming Using FLOWLOGIC 6 and Introduction to ARDUINOUNO

Mahsat acknowledge that there may be errors or omissions in this publication for which responsibility cannot be assumed. No liability will be accepted for loss or damage resulting from the use of information contained in this documentation or from uses as described.

Copyright © 2019 Mahsat . All rights reserved

MmyFlowlab[™] www.myflowlab.com

Digital STEM Programs and Duration

Module #1 Algorithm

What is Flowchart programming and Why

A flowchart programming is a arrangement of a type of diagram that represents an algorithm, workflow or process using Flowchart blocks.

What is Algorithm An algorithm is a step by step method of solving a problem or task.

Why Flowchart

Flowcharts are used in analyzing, designing, documenting or managing a process in various fields.

myFlowLab™ STEM Education uses Flowchart programming tool **FLOW**LOGIC 6 to learn computational thinking by using Flowchart blocks to construct FlowProgram {algorithm] by:-

- 1. Developing Console applications
- 2. Controlling and analyzing built-in On scree mimic model (virtual projects)
- 3. Controlling, Monitoring, analyzing real-world applications using Arduino UNO board

Flowchart Blocks to develop Algorithm

	Terminal(Stop/Start)	Used to represent start and end of flowchart.	
	Input / Output	Used for input and output operation.	
	Processing	Used for arithmetic operations and data-manipulations.	
$\langle \rangle$	Decision	Used to represent the operation in which there are two alternatives, true and false.	
	Flow line	Used to indicate the flow of logic by connecting symbols.	
	Predefined Process/Function	Used to represent a group of statements performing one processing task.	
\bigcirc	On-page Connector	Used to join different flow line	

Algorithm

Computer Program

Algorithm design

An algorithm design is logical flow or sequence of instructions That must accomplish a result

Important points:

- 1. Instructions must be well ordered
- 2. Instructions must not be the same
- 3. The process must eventually end or loop
- 4. The actions must be doable
- 5. The algorithm must produce the required result.

Core elements of an algorithm

Algorithms have some subset of the following critical elements:

- 1. Input Statement
- 2. Output Statement
- 3. Variable and Assignment
- 4. Branching / Condition
- 5. Sequences / Flow
- 6. Looping

Variable

What is Variable ?

Variables are used to store information

Variables are like containers that hold information. It must be given a unique name and assigned a data. This data can then be used throughout your program by referencing to variable name.

Assigning data to variable

portionOfSugar = 16 location = London

Loops and Conditional

Computational Thinking

Computational Thinking (CT) is a problem solving process like computer does. CT is essential to the development of computer applications, but it can also be used to support problem solving across all disciplines, including the humanities, math, and science.

Process Elements of Computational Thinking

1. Decompositon:

Breaking down a big problem in smaller chunks.

3. Pattern generalisaton & abstracton:

Putting a pattern in its simplest terms and creating a piece which can be used whenever needed. Abstracton means focusing on important information and ignoring irrelevant detail.

2. Pragmatic Thinking:

Approaching the problem using programmatic thinking techniques such as iteration, symbolic representation, and logical operations

4. Algorithm design:

Stepwise solution to a problem where the above elements are used when deemed necessary..A visual method of depicting algorithms are **flowcharts**.

Module #2

Introduction to

FlowLogic 6

FlowLogic 6 Download

- 1. Go to www.myflowlab.com
- 2. Click Download
- 3. Click Download FlowLogic 6 Ver 3.6
- 4. Click the Downloaded file to install FlowLogic 6 Version 3.6 into your computer

DOWNLOAD

FlowLogic 6, USB Driver & Guide

FLOWLOGIC 6 Version 3.6

Introduce to student the FlowLogic 6 and Guide them on how to construct a FlowProgram

Editing Command Blocks

Activity - #1 – Practice Select the Blocks , define the property, Connect Line, Delete Line and Delete block to

To delete Line and Blocks

Double click the block to Edit

Logic ON

Cancel

Digital Output

Digital Output

🖲 💽 Output O

🔿 🔿 Output 2

Output 3
 Output 4

🔿 🔿 Output 5

Output 6
 Output 7

Output 1

start

Turn ON O0

stop

To delete line "a", click on Block 1 and then Block 2, while mouse pointer on Block 2, right click and select "Delete Line" option from the pop-up menu. To delete Blocks, delete all connecting line, right Click on the block and select "Delete block"

option from the Pop-menu.

To edit blocks, double click on the block and make the necessary changes on the pop-up property Windows and click "Ok" when done.

OK.

Working with Decision Blocks

Activity - #2 - Practice Select the Blocks , define the property, Connect Line to try out

Decision block requires two (2) connecting point, the first connection to a block will be "YES" and the next connection will be "NO".

Connect the lines at your discretion based on the condition statement on the decision block.

Running a FlowPogram

Explain to Students the steps required to run a FlowProgram that is loaded into the Workspace.

Module #3 Developing Console Applications

FlowProgram / Algorithm – Activity #3

FlowProgram / Algorithm – Activity #4

FlowProgram / Algorithm – DIY #2

Computational Thinking – DIY #3

Computational Thinking – DIY #4

Computational Thinking – DIY #5

bangunan Atur Cara	PA K-21 Hasil S	i Pembentan; endiri
ada setiap bulan, anda akan menerima bil ertentu. Tahukah anda bagaimana elektrik yan atu atur cara bagi mengira bayaran bil elektrik l unakan teknik-teknik pemikiran komputasio tur cara untuk menyelesaikan masalah ini.	elektrik dengan jumlah g telah digunakan ini dil berpandukan maklumat nal bagi setiap fasa peml	bayaran kira? Bina di bawah. bangunan
Penggunaan elektrik	Kadar (RM)	
1-200 kWj (sebulan)	0.218	
201 kWj ke atas (sebulan)	0.492	100
Pate sa G	Pada setiap bulan, anda akan menerima bil tertentu. Tahukah anda bagaimana elektrik yan satu atur cara bagi mengira bayaran bil elektrik l Gunakan teknik-teknik pemikiran komputasion atur cara untuk menyelesaikan masalah ini. Penggunaan elektrik 1-200 kWj (sebulan) 201 kWj ke atas (sebulan)	Pada setiap bulan, anda akan menerima bil elektrik dengan jumlah tertentu. Tahukah anda bagaimana elektrik yang telah digunakan ini dil satu atur cara bagi mengira bayaran bil elektrik berpandukan maklumat Gunakan teknik-teknik pemikiran komputasional bagi setiap fasa peml atur cara untuk menyelesaikan masalah ini.Penggunaan elektrikKadar (RM) 0.2181-200 kWj (sebulan)0.218201 kWj ke atas (sebulan)0.492

DIY #5 - Solution

Module #4 Building Algorithm using Virtual Projects

MmyFlowlab™

Virtual Projects

Is a On-screen mimics with Pre-assigned control pins and animations that can be programmed by using the virtual command blocks

When running Virtual project programs, select the appropriate project from the list and place it on the Workspace.

Activity #5 : Robot Maze (Virtual Project)

In this project student will construct FlowProgram using FlowLogic 6 to navigate a Virtual Robot thru a maze.

Step 1: Select Robot Maze	from
the Virtual Project	List

Step 2: Click Load Maze to Load Rmaze1 image from the folder

Step 3: Construct the FlowProgram as shown

Step 4: Click Run icon to execute the FlowProgram

Step 5: Click Reset to place Robot to its origin location

Execute again to test again

Activity : Get the students to load other Maze images and construct the FlowProgram to practice their skill in Flowchart programming and Computational Thinking.

DIY #6 : Robot Maze (Virtual Project)

Step 1: Select Robot Maze from the Virtual Project List

- Step 2: Click Load Maze to Load Rmaze2 image from the folder
- **Step 3:** Construct the FlowProgram to navigate the Robot thru the Maze
- Step 4: Click Run icon to execute the FlowProgram
- Step 5: Click Reset to place Robot to its origin location

Execute again to test again

Activity #6 : Traffic Light (Virtual Project)

Develop FlowProgram / Algorithm to control a Virtual Traffic Light system.

Load Traffic Light Virtual Model from the Virtual project list

Get Student to construct the FlowProgram #1 Using virtual IO pin, Test and Present.

Variant : Get the students to construct a new FlowProgram (FlowProgram #2) to Blink the Yellow Light to enhance their skill in Flowchart programming and Computational Thinking.

Activity #7 : Rocket Launcher (Virtual Project)

Develop FlowProgram / Algorithm to Launch a Virtual Rocket. (BASIC operation)

Activity #8 : Rocket Launcher (Virtual Project)

Develop FlowProgram / Algorithm to Launch a Virtual Rocket with background audio using Media blocks

Module #5 Controlling, Monitoring, analyzing real-world applications using Arduino UNO board

What Is Physical Computing

Real-World

Physical computing means building interactive physical systems by the use of software and hardware that can sense and respond to the

Power Source

9 volt battery5 volt battery

Power Source

Resistor

Resistor value calculation

220 Ohm 4 band resistor

Resistor Identification

The end with more bands should point left when reading colors.

LEDs – Output Devices

Copyright © 2018 myFlowLab Inc.

Solder Less Breadboard – Half + Size

MmyFlowlab™ **Building Circuit using Solder Less Breadboard CHAPTER 7** How to use Solder Less Breadboard HOW'S IT ALL CONNECTED? MAKING A CONNECTION: Above the breadboard ED CONNECTED! Inside the breadboard Bus Ba Isolation Bus Bar Slot + Power: Each + sign runs power anywhere in the vertical column. - Ground: Each - sign runs to ground anywhere in the vertical column. Horizontal Rows: Each of these rows numbered 1-30 are comprised of five horizontal s 000000 ockets. Components placed in the same row will be connected in a circuit when power is running. 26

9

Power Rails / Bus Bar

Components Terminal

Breadboard Connection

Preparing your Workspace for prototyping

Activity # 9 – Assemble the Prototyping Workspace as per Layout shown.

Acrylic Base Plate

400 Hole Breadboard

GND 5V

Power source from

Activity # 10 - Circuit on Breadboard connection

Arduino board Change resistor based on Power Source

220 Ohm for 3V, 470 Ohm for 5V, 1k for 9V

DIY # 7

FlowLogic 6

Arduino USB Driver installation

- 1. Launch FlowLogic 6 Version 3.6
- 2. From the menu, click option
- 3. Select Install Arduino USB Driver Select either 32 Bit or 64 Bit
- The USB Driver Installation window Should appear as shown below, if NOT, Exit FlowLogic 6 and Run it as Administrator.

Right click on FlowLogic 6 desktop Icon and Select "Run as Administrator from the pop-menu

Device Driver Installation Wizard	Device Driver Installation Wizard	Device Driver Installation Wizard
Welcome to the Device Driver Installation Wizard!	The drivers are now installing	Completing the Device Driver Installation Wizard
This water helps you indial the orthoand drivers that some computers devices need in order to work.	Elean wat while the drawn install. This may take one time to complete	The driven were successfully installed on this computer. You can now connect you device to this computer. If your device came with instructions, please read them first.
		Driver Name Status
To continue, click Next.		
< Back Next > Cancel	< Back Ned > Cancel	< Back Finish Cancel

MmyFlowlab™

8

DIY # 8

FlowLogic 6

Companion Firmware upload

- 1. Launch FlowLogic 6 Version 3.6
- 2. From the menu, click option
- 3. Select Firmware Loader
- 4. The Firmware Loader window Should appear as shown
 - a. Click Refresh button to connect the Arduin

53

b. Fill in your Name, email and valid Access Code that you have purchased and click Upload button

FlowLogic 6 Companion Firmware Loader Ver 1.1

Flow Program - New	the Party and provident of	A Real Property of the owner of the	and the set of the set			- D - X
File Change Shape View Delete	Option Control Blocks Comm Ab	out				
🍃 🔜 🔜 🗔 🧔 💧	Auto Connect	N 🔤 🗖 🔼 🐽	Virtual Projects	▼ PORT : No Board ▼ OPEN	RESET ? 🗍	FlowLogic 6.0 Ver 3.6 STEM Edition
	Workspace Grid Hide Show Panel					
FLOWCHART					ļ	
START	Clear Visual IO Rits					
TEXT						Program Speed
	Install Arduino Driver - 52 Bit					
MATH	Install CH341 Driver					Block Color
	Firmware Loader	$\langle 2$				💿 Back 🔘 Text 🔘 Border
Function						
STOP						N 1 0
Control						Block Size
RTUAL						WILLIN 160 -
201						Height: 35
RDUINO						
Ō						Traingle area.ml
and						Square area.ml multiplication.ml
ata Display						Conditional Execution with I
						Remove File
Boara						
Sent Data to Cloud						
Write Data to File						0
1						To solve to learning
🤊 D 🚞 🚺		2		8 1		12:37 AM
						7/4/2019

FlowLogic 6 Companion Firmware Loader Ver 1.1

Click Refresh button to Load Resources	Refresh	Click Refresh button to Load Resources	Refresh	Arduine Une Board connected to COM89 OK Arduine Une Board Driver OK Arduine Une Board Driver OK Internet Connection OK	
>	а			CD Key Registration	
				Code Key in correctly all the required information and click UPLOAD button	an
	Exit	42%	Exit	UPLOAD	at

FlowLogic 6 Companion Firmware Loader Ver 1.1

Activity #11 - Single LED Connection

Fritzing

TESTING AND DEBUGGING ARDUINO UNO board

To ensure connections and Components functionality are corrects before building algorithm/ Programming

Flow Program - Ne	W View Delete Ontion Control Blocks Comm	About			
	🛃 🔎 🔶 I 🚄 📅 📅 I 🗖 🖻		ic Light 🗾 PORT	т : No Board 🔽 OPEN RI	ESET I STEM Edition
FLOWCHART		\sim			
START					• • • • • • • • • • • • • • • • • •
TEXT MATH	Control Panel for Arduino Board interface	Servo Motors Pin 12 C Pin 13 C Speed (Shift Register myFlowA		Program Speed Piogram Speed Block Color
	Comm Port : COM95	Refresh Value 128 >>		- 10 🕢 🕞 🕖	💿 Back 🌍 Text 🕥 Border
Function	Digital Outputs OPin 6 1Pin 7 2Pin 8 0 ON OFF ON OFF ON OFF	3 Pin 9 4 Pin 10 5onar Sensor Trigger-2 Echo-3 ON OFF ON OFF 0	3 Lower 4 Wrist 5 Gripper 6	- 11 () 0 - 12 () 0 - 13 () 0	-
	Digital Inputs Analog Input Image: Pin 2 OFF Image: Pin 3 OFF Image: Pin 3 OFF Image: Pin 4 OFF Image: Pin 4 OFF Image: Pin 4 OFF Image: Pin 4 OFF Image: Pin 5 OFF Image: Pin A3 S71	PWM - Analog Write Pin Value 6 • • > 9 • • > 10 • • >	T Speed DEMO Serial one after another Comman Comman Line : one at a time comman ping pong ping pong	d Dever firm	8H66FF67 102,255,103 Block Size
Delay Timer 1224 Data Display	DHT Sensor - Pin 5 Humidity : 2	Temperature : •C	Random Cit	nper Base	Traffic Light 1.mll
Media Files	Panel Text : Line #1:	>>> Line #2:	Play ALL OFF ALL Tone - Pin	Nhist	Remove File
ON Delay Timer	Connected to arduino board via COM95	· · · · · · · · · · · · · · · · · · ·		NE CLOSE	
Write Data to File		<u>Screen 04-08-19 a</u>	<u>t 04.18 PM</u>		

Copyright © 2018 myFlowLab Inc.

DIY # 9 - Modify the Algorithm/FlowProgram for Aircraft Anti-Collision Strobe Light

Explain the aircraft anti-collision light project, get them to change the first delay value to 0.02 sec and second delay value to 2 sec and Run it.

DIY # 10 – Develop an Algorithm / FlowProgram to blink the Led at a interval based on the profile below

Variations : Create the same effect by adjusting the delay frequency

Building Real-World Digital Output project

2- LEDs Police car Siren

Activity # 15 - 2 LED Connection

Fritzing

Police Car Siren Project

Activity # 16 - Algorithm/FlowProgram for Police Car with Audio

Police Car Siren Light Project

Guide student to write a program to double blink each LED with slow delay

Edit the Delay for the LEDs to blink like Police car siren light.

Get them to place the Media command block (Police-Siren) in a correct flow.

Building Real-World Digital Output project

3- LEDs Traffic Light system

Activity # 17 - 3 LED Connection

Activity # 19 - Algorithm/FlowProgram for Traffic Light system

Traffic Light Control Project

MmyFlowlab™

Guide student to write a program to control a Traffic as per sequence below – The UK Standards

Variation: Get the students to program the Traffic Light based on American Standards

Building Real-World Digital Output project

RG LED Digital Color Mixing Mood Lamp

Activity # 18 - RGB LED Connection

Activity # 19 - Manual Color Mixing using Control Panel

😫 Flow Program - New		
File Change Shape View Delete Option Control Blocks Comm About		
📝 👪 🛃 👰 🌪 🦯 📅 📅 🗖 🗖 💷 🖾 🖾 🧖 🚫 😳)Traffic Light 🔤	🗸 PORT : No Board 🔍 OPEN RESET 🌑	FlowLogic 6.0 Ver 3.5 STEM Edition
FLOWCHART		PROGRAM EXECUTION
START		
Control Panel for Arduino Board interface		Program Speed
Servo Motors Shift Register MATH O CONTROL PANEL Pin 12 C Pin 13 C Speed 0 0	myFlowARM Base - 9	
Comm Port : COM95 CLOSE Refresh Value I 1 ? 128 >> 2	Upper - 10 ()	Back Text Border
	Lower - 11 • 0	
Function	Wrist - 12	
C ON OFF ON OFF ON OFF ON OFF ON OFF O	Gripper – 13	
STOP Digital Inputs Analog Input PWM - Analog Write 7	Speed HOME	&H66FF67 102,255,103
Control Din 2 OFF Pin Value Din Value DEMO	Serial	Block Size
VIRTUAL Pin 3 OFF	Command GO	Width: 90 🚑
PROJECT	Line :	Height: 30 🚑
	Lower Arm Upper Arm	Recent Project Files
Delay Timer DHT Sensor - Pin 5		
Data Display	Cripper Base	
16 x 2 LCD Panel - SDA SCL / A4 A5	Wrist	Remove File
Media Files Panel Text : Line #1: >> Line #2: >> Play ALL	Tana Bia Mad	
ON Delay Timer		
Connected to arduino board via COM95		
Click here to view the LDR value	1	

Activity : Get the students to explore manually to test their circuit and connection. Guide them to use the DigitalWrite and PWM-Analog Write command to turn ON/OFF the RGB LED and perform Digital Color Mixing thinkering.

Activity # 20 -Algorithm/FlowProgram for Color Mixing using RGB Led – Using Digital , Analog and Math block

FlowProgram using DigitalWrite () Command Block

FlowProgram using AnalogWrite () Command Block

Mood Lamp – Prototype Model Sample

Final Project

Design a Creative Mood Lamp and Develop FlowProgram / Algorithm to animate the colors

END OF Flowchart programming using FlowLogic 6 And Introduction to Arduino UNO FOUNDATION **LESSON PLAN CONTENTS**

Visit <u>www.myflowlab.com</u> to download Beginners Guide And video tutorials and

